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ABSTRACT

Cardiotoxicity is a critical side effect of breast cancer treatments that significantly impacts
patient care and treatment outcomes. Understanding both the probability of developing car-
diotoxicity and the timing of its onset is essential for optimizing therapeutic strategies and
patient monitoring. However, analyzing cardiotoxicity data presents challenges: not all pa-
tients will develop this side effect and multiple patient characteristics of different nature are
available. To address this real clinical problem, single-index mixture cure models are pro-
posed for both vector and functional covariates. These models estimate the cure rate and
the latency nonparametrically, assuming that they depend on patient characteristics via a
single linear combination, avoiding the curse of dimensionality. The parameter vector that
determines the single-index is estimated by maximizing the semiparametric likelihood, with
bandwidth selection for the nonparametric components incorporated directly into the opti-
mization process. The asymptotic normality of the parameter vector estimator is established.
The methodology, implemented in the sicure R package, is applied to analyze cardiotoxicity in
531 women with breast cancer from the University Hospital of A Corufa.

Keywords: cardio-oncology, censored data, dimension reduction, semiparametric models, survival
analysis.

1. INTRODUCTION

Cardiotoxicity represents one of the most significant complications of modern breast cancer treatment.
The condition has important prognostic implications and may progress to heart failure over time, mak-
ing its early detection a critical but ongoing clinical challenge. Current practice relies on standardized
monitoring protocols that lead to inefficiencies: low-risk patients receive intensive monitoring that may be
unnecessary, while high-risk patients may not be identified early enough for optimal intervention. Improv-
ing the baseline risk stratification of cardiotoxicity would allow for more personalized monitoring, with a
focus on patients with higher risk, and for the optimization of resources.

Conventional survival models assume that all subjects would eventually experience the event of in-
terest under infinite follow-up. This is reflected in survival functions that tend to zero as time increases.
However, in many medical scenarios, including cardiotoxicity, this assumption is not realistic. Some pa-
tients, considered as cured, may never experience the event. In these cases, the survival function tends to
a positive value as time increases, reflecting the cure rate. Mixture cure models address this by modeling
the population as a mixture of two groups: susceptible individuals (who may experience the event) and
cured individuals (who will never experience it). They allow to estimate the probability of cure and the
survival function for the uncured or susceptible subjects (known as latency). In the literature, several
parametric, semiparametric and nonparametric methods have been proposed to estimate both functions.
This work focuses on the nonparametric estimators of the probability of cure and latency proposed and
deeply studied in Xu and Peng (2014), Lépez-Cheda et al. (2017a) and Lépez-Cheda et al. (2017b). They
are based on the Beran estimator of the conditional survival function (Beran, 1981) and are suitable when
the covariate is one-dimensional.

In higher dimensions, the curse of dimensionality becomes a significant obstacle. We address this
challenge using the single-index dimension reduction technique. A likelihood approach for estimating
the conditional distribution or density under a single-index assumption and random right censoring was
introduced in Strzalkowska-Kominiak and Cao (2013). While some recent work has considered hybrid
approaches combining single-index models with Cox models in the presence of cure, we propose a full



single-index mixture cure model, applying this dimension reduction technique to both the cure rate and
the latency.

The rest of the document is organized as follows. Section 2 describes a cardiotoxicity dataset related to
breast cancer patients, providing the clinical context that motivates the methodological development. In
Section 3, the single-index mixture cure model in the presence of a vector covariate is presented. This model
extends the methodology developed in Xu and Peng (2014), Lépez-Cheda et al. (2017a) and Lépez-Cheda
et al. (2017b) to covariates with dimension higher than one, and the single-index model in Strzalkowska-
Kominiak and Cao (2013) to the presence of cure. A maximum likelihood estimator of the vector of
parameters that determines the single-index is proposed, and its asymptotic normality is proved. Since the
smoothing parameters involved in the model are incorporated in the optimization procedure, the problem
of bandwidth selection, which is always a challenge in nonparametric or semiparametric estimation, is
solved. In Section 4, single-index mixture cure models are extended to functional covariates, such as those
arising from medical imaging tests. To make the optimization procedure feasible in this context, a basis
representation of the functional covariate is considered. Finally, Section 5 presents the real data applica-
tion, demonstrating the practical utility of the methodology and its clinical implications for personalized
cardiotoxicity monitoring in breast cancer patients.

2. CARDIOTOXICITY DATASET

The dataset available in Pifieiro-Lamas et al. (2023a) and detailed in Pineiro-Lamas et al. (2023b) is
considered. It consists of information about 531 women diagnosed with breast cancer between 2007 and
2021 and treated with potentially cardiotoxic therapies at the University Hospital of A Corunia. A time
variable, an uncensoring indicator and several baseline covariates are available for each woman. The time
variable contains the time (in days) until cardiotoxicity onset or the lost of follow-up (the event which
happens first). The uncensoring indicator denotes whether the patient did (54) or did not (477) experience
cardiotoxicity during the follow-up period. Figure 1 shows the Kaplan-Meier estimation of the survival
function. Given the presence of a plateau in the right tail and the medical evidence of a proportion of
women not susceptible to cardiotoxicity, cure models seem plausible. The height of the plateau (around
0.7) estimates the probability of being cured (insusceptible to cardiotoxicity).
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Figure 1: Kaplan-Meier estimation for the cardiotoxicity dataset.

For each woman, baseline covariates are available, including patient characteristics (age, height, weight),
cardiac parameters, treatment information and comorbidity indicators. The dataset also includes Tissue
Doppler Imaging (TDI) data, an echocardiographic technique that captures cardiac muscle velocity during
contraction and relaxation, providing valuable information about the function and mechanics of the heart



(Figure 2). A preprocessing algorithm was developed to extract velocity functions from TDI images focus-
ing on a single cardiac cycle (Pineiro-Lamas et al., 2023b), obtaining the result in Figure 3. Each cycle
contains three characteristic waves: S (systolic, above zero velocity) and E’ and A’ (diastolic, negative
velocity). The difference between the cycles of both groups of patients (with and without cardiotoxicity)
is more remarkable in the central zone. In particular, for the patients with cardiotoxicity detected during
the follow-up period, the E’ wave seems smoother and shifted to the right. This suggests the potential
predictive role of the TDI in this context.

Figure 2: Example of a TDI.

Given the clinical importance of cardiotoxicity and the data available, several key questions arise. What
is the probability of developing cardiotoxicity based on the patient characteristics? Which factors might
increase or decrease this risk? For patients who do develop this complication, what is the distribution of
the time until its onset? Does it appear early in treatment or as a long-term effect? Are there factors
that might accelerate or delay its appearance? Answering these questions could enable more personalized
treatment approaches, allowing clinicians to identify high-risk patients who may benefit from alternative
therapies or more intensive monitoring. The statistical methodology presented in the following sections
addresses these clinical questions by modeling both the probability of cardiotoxicity and the timing of its
onset as functions of the available patient covariates.

3. SINGLE-INDEX MIXTURE CURE MODELS FOR VECTOR COVARIATES

To fix our notation, let Y denote the time variable of interest. In this work, we will assume that each
individual is subject to random right censoring. For random right censored observations we know that the
survival time, Y, is greater than a censoring time, C, but its exact value is unknown. Therefore, due to
censoring, we do not always observe Y, but we observe instead (7T',0), being T' = min(Y, C) the observed
lifetime and § = I(Y < C) the uncensoring indicator (§ = 1 if the event occurs during the follow-up
period, § = 0 otherwise). Moreover, let X = (X1,...,Xq) € R? be a vector covariate. In practice, the
observations are {(X;,T;,0;),¢ = 1,...,n} (iid copies of the random vector (X,T,d)). We assume that
Y and C are conditionally independent given X (Y L C|X). An important challenge in mixture cure
models is the partial absence of the cure status. Let v be a binary variable such that v = 0 if the subject
is susceptible to the event and v = 1 if the subject is cured. While the uncensored observations are known
to be uncured (v = 0), it is unknown if a censored individual will be eventually cured or not (v is missing).
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Figure 3: In magenta, the cardiac muscle velocity functions of the patients who experienced car-
diotoxicity during the follow-up period. In black, the cardiac muscle velocity functions of the
patients who did not experience the side effect.

Mixture cure models were proposed by Boag (1949) and, for a vector covariate X, they can be expressed
as follows:
S(tle) =1 = p(®) + p(2)So(t|2),
where & denotes any possible value for the covariate X, S(t|lz) = P(Y > t|X = x) is the conditional
survival function of all the individuals (cured and uncured), 1 — p(x) = 1 — P(v = 0|X = ) is the
probability of cure and So(t|x) = P(Y > t|X = @, v = 0) is the latency.

The probability of cure and the latency can be estimated parametrically, semiparametrically or non-
parametrically. Xu and Peng (2014) first introduced a nonparametric cure probability estimator, which
was extensively studied by Lépez-Cheda et al. (2017a). Ldépez-Cheda et al. (2017b) proposed a non-
parametric estimator for the latency. Both estimators work in the presence of a continuous univariate
covariate. When dealing with a covariate vector of dimension greater than one, the curse of dimensionality
can be problematic. To address this, we propose single-index mixture cure models that can handle vector
covariates. Specifically, a single-index approach is considered for both the probability of cure and the
latency. Under the single-index assumption, we assume that the functions p(z) and So(¢|x) depend on the
covariate vector only through a linear combination. This allows us to rewrite these functions as pg 1(90’:1:)
and So,s1(t|@0’x), where the subscript SI denotes the single-index versions that depend on the index 0o’z
rather than the full vector @, leading to a single-index model for the survival function:

StX =x) =1—p(x) + p(x)So(t|z) = 1 — psi(8o'x) + ps1(00’'x)So,51(t|0c'x) = Ss1(t|00’ X = Oo'x),

where v'w denotes the inner product for v,w € R, S : R4 - [0,1], p: R = [0,1], So : R4t — [0, 1],
psr: R — [0,1], So,sr : R? = [0,1] and Ss; : R? — [0, 1] is a function such that Ss;(tju) = 1 — psr(u) +
ps1(u)So,sr(tlu). For every w, So sr(t|u) is a proper survival function in ¢. Note that the single-index
approach summarizes the vector covariate, X, into one single score, often referred as the index. The cost
of reducing the dimension is the estimation of 8 € R?, which is an unknown d-dimensional vector of
parameters. To ensure identifiability, its first component is set to 1. The vector of parameters 8¢ can be
estimated by maximum likelihood, where the logarithm of the theoretical conditional likelihood function
can be expressed in terms of the sample {(X;,T3,6;),i=1,...,n}:

n

NOEESY {51- log (ps1(6'X:)) + 6 log (fos1(T10' X))

i=1

+(1 —6;)log (1 —ps1(8'X:) +pSI(B/Xi)SO,SI(Ti|9,Xi)):| , (1)



where fo g1 is the density function of Y|00’X = 0¢'xz,v = 0. If psr, So,s1 and fo,s1 were known, then
6o could be estimated by maximizing Equation (1) in 8. However, since these functions are unknown
in practice, they need to be estimated. The logarithm of the estimated conditional likelihood function
is obtained by replacing the unknown functions with their nonparametric leave-one-out cross-validation
estimators. This function depends on 6 and four bandwidths:

(0,1, ho, b, ha) =y {61- log (ﬁg}',hl (e’Xi)) + 6 log (faél,hg,m <T¢|0’Xi>)

i=1
+(1 = 6:) log (1 — Ps1,ny (0'X3) + P51, (0'X0)S5 51, (Ti|9/Xi))] : (2)

To estimate the cure rate, since the covariate has dimension one, the estimator proposed by Xu and
Peng (2014) can be used:

L= pn, (u) = §h1 (TnlﬂaX‘u)?
where S, (t|u) is the Beran estimator of S(tu), Thay = max;,s,=1(7%) is the largest uncensored survival

time and h; is a smoothing parameter. Regarding the latency, the nonparametric estimator proposed by
Lépez-Cheda et al. (2017b) can be used:

Sy (tu) = (1 = pny (u))
ﬁh2 (u)

So,na (tlu) = ;
where 1 — pp,(u) is the estimator of the cure probability by Xu and Peng (2014) and hs is a smoothing
parameter. To estimate fo,sr, we propose a kernel type estimator by generalizing the Parzen-Rosenblatt
one to the presence of censoring, cure and covariates:

Jonans(tln) =3~ Kng (t = T.) (Fona (Tilu) = Fo, (Tilu)),

where K, (-) = h%.K (hs) is a rescaled kernel function, 1 — Fo s, (:|-) = So.4,(-|-) is the nonparametric la-
tency estimator in Lopez-Cheda et al. (2017b), and hs, hs are bandwidths. An almost sure representation
for this estimator was derived (Pifeiro-Lamas, 2024). The estimator is implemented in the cd.uncured
function of the sicure package, available on CRAN (Pineiro-Lamas, Lépez-Cheda and Cao, 2025). Note
that, in Equation (2), we have considered the leave-one-out cross-validation estimators of the three involved
functions, where the —i in the superscript denotes that the ith observation is not considered to compute
the estimators. This way, the sample used to construct the estimator and the value where it is evaluated
are independent.

Four bandwidths are required for the estimation procedure: hi to estimate psr, he to estimate So sr1,
and hs and h4 to estimate fy g7. The bandwidths h1, ho and h4 are used to smooth the covariate, while
hs smooths the time variable. It is noteworthy that global bandwidths are taken into account, because
choosing 4n local bandwidths would be very costly from a computational point of view.

The maximum likelihood estimator of g and the selected bandwidths can be obtained by maximizing
the estimated log-likelihood function:

(én,ﬁ17h2,ﬁ37h4) = arg max Zn(97h1,h27h3,h4).

6,h1,ho,h3,hy

The optimization procedure is implemented in the sicure.v function, which is part of the sicure package.
Since 6, and the selected smoothing parameters cannot be obtained explicitly, numerical optimization
methods with a multi-start approach are used to address potential local maxima in the objective function.
While incorporating bandwidth selection into the optimization procedure addresses the challenge of choos-

ing appropriate smoothing parameters, it also introduces additional computational complexity.

The asymptotic normality of 0, was proved (Pifneiro-Lamas, 2024). Additionally, in order to empiri-
cally assess its performance, a simulation study was carried out.



4. SINGLE-INDEX MIXTURE CURE MODELS FOR FUNCTIONAL COVARIATES

Consider a functional covariate X € F, where F is a subset of the space of continuous functions on a
compact interval 7. We consider the inner product (f,g) = [_ f(u)g(u)du, with associated norm || f|| =

VAT ) =4/ f f?(u)du. Furthermore, we assume that functions in & are uniformly bounded with respect
to thls norm: there exists M > 0 such that ||f|| < M for all f € F. These conditions ensure desirable
analytical properties. Then, mixture cure models can be written as follows:

S(tle) =1 = p(a) + p(x)So(t[x).

Using a bingle index approach, the functional covariate effect can be summarized into the inner product
(00, X f Oo(u u)du, for some function 6y € ©, where © is a bounded set of parameter functions
deﬁned on 7. Let us con51der a single-index model for the cure rate and the latency. That is, let us assume
that 30y € © such that 1 — p(x) = 1 — ps1((6o,)) and So(t|x) = So,s1(t|{bo,x)), where p : F — [0,1],
psr: R — [0,1], So : R x F — [0,1] and So,sr : R? — [0,1]. Thus, the single-index mixture cure model
with a functional covariate is

S(t|X =) = Ss1(t[(0o, X) = (b0, x)),
where S: R x F — [0,1] and Ssr : R? = [0,1].
The logarithm of the estimated conditional likelihood function is analogous to the one in the vector
case (Equation (2)), replacing 8’ X with (6, ). To make optimization feasible, the infinite dimension of

the covariate is reduced via a basis representation. Using an orthonormal basis {¢x;k =1,2,...}, X can
be decomposed as follows:

Z&m Zewk

being K a sufficiently large integer that should be data-drlven rather than arbitrary. This reduces each
subject’s information to a vector of scores & = (&1, &2, ...,&k), and the model then simplifies to

Ss1(t[Bo'€) =1 — ps1(Bo'€) + psi(Bo'€)So,s1(t|Bo’€),

where Bo € R¥ is a vector of parameters (analogous to o in the vector case).

By reducing the functional case to the vector one through a basis representation, we unlock the pos-
sibility of combining both types of variables in the same model. Specifically, we can create a combined
vector Xe = (X1,...,X4,&1,...,€k) of dimension d + K, and apply the following single-index mixture
cure model:

Ssr(tlvo'Xe) =1 —psi(vo' Xe) + psi(vo' Xe)So,s1(tlvo' Xe),
where o € ROTE
case).

is a vector of parameters (analogous to Bg in the vector case and (3o in the functional

The sicure.f function estimates the parameter vector (o in a single-index mixture cure model for
functional covariates, using Functional Principal Components Analysis (FPCA) for dimension reduction.
The sicure.vf function estimates the parameter vector o when both vector and functional covariates are
present in the model.

5. DATA APPLICATION

The methodology presented in Sections 3 and 4 is applied to the cardiotoxicity dataset described in
Section 2, demonstrating its practical utility for personalized risk assessment in clinical settings.

We first consider the vector covariate X = (heart rate, age, height, weight, LVEF, PWT, LAd, LVDd,
LVSd) € R?, where LVEF is the Left Ventricular Ejection Fraction, PWT the Posterior Wall Thickness,
LAd the Left Atrial diameter and LVDd (LVSd) the Left Ventricular Diastolic (Systolic) diameter. Since
d =9, the optimization problem consists on the estimation of 12 parameters (o2, ..., 6009 and four band-
widths). A single-index mixture cure model is fitted to estimate (1, 6o2, o3, 6o4, o5, Oos, Bo7, Bos, Bog) using
the sicure.v, resulting in the following estimated single-index variable:

heart rate + 1.3742 x age — 0.5597 x weight + 0.0390 x height — 0.3815 x LVEF
—0.0200 x PWT — 0.1728 x LAd — 0.0954 x LVDd + 0.4931 x LVSd.



The largest estimated value (in absolute value) is the one associated to age, what indicates that it is the
most important covariate. Also note that heart rate, age, height and LVSd have positive coefficients,
while the remaining ones are negative. Besides, the selected bandwidths are hy = 0.3899, ho = 0.5427,
hs = 144.3880 and hs = 0.4345. Although hs seems considerably large compared with the others, it is
important to highlight that it is used for smoothing the time variable, which is measured in days.

Figure 4 shows the estimated probability of cardiotoxicity (left) and latency curves (right) as func-
tions of the single-index variable. Higher index values correspond to increased cardiotoxicity probability
and earlier onset times, suggesting the variable’s role as a risk factor. While the effect on the cure rate
is not statistically significant (p — value = 0.26), the clinical patterns suggest potential utility for risk
stratification. Based on risk factors, doctors might develop personalized monitoring plans and recommend
preventive measures to improve the patient’s overall health outcomes.
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Figure 4: Left: Estimated probability of cardiotoxicity (black line) depending on the estimated
single-index variable, considering the vector variable related to the cardiotoxicity dataset. The
grey line represents the Parzen-Rosenblatt kernel density estimation of the estimated single-index
variable, using Sheather and Jones’ plug-in bandwidth. Right: Estimated latency depending on
five values of the estimated single-index variable, considering the vector variable related to the
cardiotoxicity dataset.

We next analyze the TDI data as functional covariates (Figure 3). To fit a single-index mixture cure
model the sicure.f function is used, which internally reduces the dimensionality using FPCA with K = 8
components, explaining 90% of the data variability. This process transforms each patient’s function into an
8-dimensional vector of scores. As in the vector case, higher values of the estimated single-index variable
are associated with increased cardiotoxicity probabilities and earlier onset times (Figure 5), while the effect
on the cure rate is not significant (p — value = 0.76).

The most clinically relevant results emerge when combining both vector and functional covariates. This
creates a 17-dimensional combined covariate vector (9 clinical variables + 8 functional scores). Using the
sicure.vf function, we found that higher values of the estimated single-index variable are associated with
higher probabilities of cardiotoxicity. In this case, the effect of the covariate on the cure rate was found to
be significant (p — value = 0.047). Based on these results, the estimated single-index variable may be used
as a cardiotoxicity risk factor. This means that all components with positive estimated coefficients (as the
age) may raise the risk of cardiotoxicity, while those with negative estimated coefficients (as the LVEF)
may have a protective impact. These results are consistent with the cardio-oncology literature. However,
the single-index variable seems to have no effect on the latency.

Figure 7 shows the estimated probability of cardiotoxicity for each patient, depending on her estimated
single-index variable. Patients who developed cardiotoxicity have a higher mean estimated probability
(0.38) compared to those who did not experience this cardiac problem (0.20). Note that all the patients
with an estimated value of 0 did not experience cardiotoxicity during the follow-up period. Furthermore,
among the patients with an estimated probability higher than 0.75, almost half presented cardiotoxicity
during follow-up. Recall that censored observations (the ones in black) can correspond to uncured pa-



o S ]
— —
2 X @
S o o ]
X
S
o
5 Q] © |
E o >
3 g °
5 5
< <
E O - — C) -
Q
<
Qo
S N
o o <]
o | o |
© T T T T T ‘ © T T T T
-4 -2 0 2 4 0 500 1000 1500
Estimated single—index variable Time (days)

Figure 5: Left: Estimated probability of cardiotoxicity (black line) depending on the estimated
single-index variable, considering the functional variable related to the cardiotoxicity dataset. The
green line represents the Parzen-Rosenblatt kernel density estimation of the estimated single-index
variable, using Sheather and Jones’ plug-in bandwidth. Right: Estimated latency depending on
five values of the estimated single-index variable, considering the functional variable related to the
cardiotoxicity dataset.

tients. That is, if the follow-up time were longer, it is possible that the black points with high estimated
probabilities would be actually magenta.

The computational complexity of fitting single-index mixture cure models deserves consideration. Us-
ing a computer with AMD Ryzen 9 5950X 16-Core Processor, 3.40 GHz, 128 GB RAM, the estimation
procedure required reasonable computational times across all scenarios: the vector covariate case was the
fastest, while the functional covariate alone and the combined vector-functional approach both required
approximately 10 minutes, using multi-start Nelder-Mead optimization with 10 different initial values.
This reasonable computational time makes the method feasible for clinical applications.

6. DISCUSSION

Single-index mixture cure models provide a powerful framework for analyzing survival data with a cure
fraction, capable of handling both vector and functional covariates. The semiparametric nature of these
models, combining nonparametric estimation of the cure probability and latency functions with paramet-
ric dimension reduction via the single-index approach, enables flexible modeling of complex relationships
between covariates and survival outcomes while avoiding the curse of dimensionality. The sicure R package
makes these models accessible to researchers.

From a clinical perspective, the application to cardiotoxicity demonstrates the practical potential of
these methods. By simultaneously modeling both the probability of developing cardiotoxicity and the
timing of its onset, the approach addresses a gap in current clinical practice where the temporal aspect is
often overlooked. This enables more informed clinical decision-making, personalized monitoring approaches
based on individual patient characteristics, and more efficient management of medical appointments. The
clinical utility of this methodology has been further confirmed by Pifieiro-Lamas et al. (2025), who used
insights from the single-index modeling of TDI functional data to develop simplified clinical predictors
based on key E’ wave characteristics.

There are a few limitations in our work. Since the same vector of parameters, @g, is considered in the
single-index model for the cure rate and the latency, the vector covariate is assumed to have the same effect
on both functions. In future work, we plan to make our models more flexible by considering that the sur-
vival function depends on X through two indices. Additionally, developing an appropriate goodness-of-fit
test for the single-index model is crucial. This test would serve as a valuable tool to assess the adequacy
of these models in capturing the underlying data structure.
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Figure 6: Left: Estimated probability of cardiotoxicity (black line) depending on the estimated
single-index variable, considering both the vector and the functional variables related to the car-
diotoxicity dataset. The green line represents the Parzen-Rosenblatt kernel density estimation of
the estimated single-index variable, using Sheather and Jones’ plug-in bandwidth. Right: Esti-
mated latency depending on five values of the estimated single-index variable, considering both
the vector and the functional variables related to the cardiotoxicity dataset.

Despite these limitations, the methodology presented here constitutes a novel contribution to evidence-
based medicine and personalized treatment in cardio-oncology, providing clinicians with enhanced tools
for risk stratification and patient monitoring optimization.
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Figure 7: Estimated probability of cardiotoxicity for each patient depending on its estimated single-
index variable, considering both the vector and the functional variables related to the cardiotoxicity
dataset.



